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Location Proteomics: How do we 
determine subcellular locations for 
entire proteomes across different 
conditions, cell types, tissues and 
organisms? 
How do we represent the information? 



Outline 

•  Status of automated subcellular pattern 
analysis in cultured cells 
– Classification 
– Pattern unmixing 
– Generative models of patterns 

•  Application to tissue images 
– Classification 
– Comparison 



Automated Analysis of Subcellular 
Location 
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Illustration: 2D Morphological 
Features to Distinguish Patterns 
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Pattern unmixing 

•  Many proteins (or other 
macromolecules) may be found in more 
than one organelle 

•  Features “see” each combination of 
organelles as a new pattern 

•  Can we “unmix” such mixed patterns? 



Supervised Unmixing Assumptions 

•  have markers found in only one subcellular 
location (fundamental pattern) 

•  fundamental pattern can be represented by 
frequencies of distinct object types (e.g., 
10% small round and 90% long skinny) 

•  mixed pattern formed by adding together 
the objects from two or more fundamental 
patterns - no new object types created 
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Learning object types 

•  Find all objects in all images of 
fundamental types 

•  Describe each object by features such as 
size, ellipticity, distance from nucleus 

•  Cluster objects to find types 
•  Represent each fundamental pattern as 

probabilities of observing each object type 

Zhao et al 2005 Ting Zhao 
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Examples of Object Types 

Type A 

Type B 

Type C 

Type D 



Test samples 

•  How do we test a subcellular pattern 
unmixing algorithm? 

•  Need images of known mixtures of pure 
patterns – difficult to obtain “naturally” 

•  Created test set by mixing different 
proportions of two probes that localize 
to different cell parts (lysosomes and 
mitochondria)   



•  Lysotracker 
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Tao Peng, Ghislain Bonamy, Estelle 
Glory, Sumit Chanda, Dan Rines 
(Genome Research Institute of 
Novartis Foundation) 



•  Mitotracker 
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•  Mixture of Lysotracker and Mitotracker 
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Supervised unmixing results 
Proceedings of National Academic of Sciences, January 2010 



Supervised unmixing results 



Unsupervised unmixing 

•  May not know all fundamental patterns, 
and/or may not have markers that are 
entirely in just one 

•  Solution: Simultaneously estimate the 
fundamental patterns and the fractions 



Learning the number of 
fundamental patterns 



Finding fundamental patterns 

•  Best fit obtained with three fundamental 
patterns 

•  Using those three patterns, calculate 
unmixing % for the “pure” images 

Pure Mito 
Images 

Pure Lyso 
Images 

Pattern 0 0.0 0.0 
Pattern 1 8.8 99.9 
Pattern 2 91.2 0.1 



Unsupervised unmixing results 
           K=3 

Luis Coelho 
Tao Peng 
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Generative models for 
communicating patterns 

•  How do we communicate results 
learned about subcellular patterns? 

•  Proposal: Use generative models 
learned from images to capture pattern 
and variation in pattern 



Generative Cell Models 
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Generative Cell Models 

•  Training 
–  Learn the distributions of model parameters over 

many cells for each component of the model 
•  Synthesis 

–  Randomly sample parameters from the 
distributions 

–  Construct components using the sampled 
parameters 



Synthesized nuclear shapes 



Synthesized Images 

Lysosomes Endosomes 
  Have XML design for capturing model parameters 
  Have portable tool for generating images from model 

SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao 



Combining Models for Cell 
Simulations 

Protein 1 
Cell Shape 

Nuclear Model 

Protein 2 
Cell Shape 

Nuclear Model 

Protein 3 
Cell Shape 

Nuclear Model 

XML 

Shared 
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Simulation 
for multiple 

proteins 

Integrated with Virtual Cell (University of 
Connectiicut) 



Example combinations 

Red = nuclear membrane, plasma membrane 
Blue = Golgi 
Green = Lysosomes 
Cyan = Endosomes 
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Human Protein Atlas 

www.proteinatlas.org (Uhlén, Pontén et al) 
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Immunocytochemistry 
Signal Unmixing 

•  The Haematoxylin and DAB stains are imaged 
together 

•  Each stain contains multiple sources 
–  Haem. = n1R + n2G + n3B 
–  DAB = n1R + n2G + n3B 

•  Use two unmix methods to find w’s 

I n v e r t 

28  22  36 
28  23  29 
28  23  55 
28  24  21 
28  24  23 
28  24  25 
28  25  18 
28  25  20 
28  34  66 
28  44  34 
28  48  75 

R G B 

U n m i x C o l o r   I m a g e 



Cell segmentation? 

•  Most analysis of subcellular patterns 
has used images segmented into single 
cell regions 

•  Results on yeast and cultured cells 
show classification of basic patterns can 
be achieved without segmentation 

•  Given difficulty of segmenting tissue 
images into cells, used field features 



Test Dataset from Human 
Protein Atlas 

•  Selected 16 proteins from the Atlas 
•  Two each from all major organelles (class) 
•  ~45 tissue types for each class (e.g. liver, skin) 
•  Goal: Train classifier to recognize each 

subcellular pattern across all tissue types 
•  Use object and texture features 

Justin Newberg 



Pattern Classification over 45 tissues 
Labels 

Prediction 

Overall accuracy 81% 
          

 ER Cyto Endo Golgi Lyso Mito Nucleolus Nucleus 
ER 

(131) 83.2 7.6 3.1 1.5 2.3 0.8 1.5 0 

Cyto 
(125) 14.4 64 3.2 0 10.4 7.2 0 0.8 

Endo 
(111) 8.1 9.9 75.7 0 2.7 0 0 3.6 

Golgi 
(126) 1.6 0 0 87.3 1.6 0 9.5 0 

Lyso 
(127) 3.9 9.4 1.6 7.9 75.6 0 0.8 0.8 

Mito 
(125) 3.2 4 0 3.2 0.8 85.6 1.6 1.6 

Nucleolus 
(120) 0.8 0 0 5.8 4.2 1.7 87.5 0 

Nucleus 
(117) 0 0.9 8.5 1.7 0 0.9 0 88 

 



Prediction 

Accuracy for 50% of images with highest confidence: 97% 

 ER Cyto Endo Golgi Lyso Mito Nucleolus Nucleus 
ER 
(53) 100 0 0 0 0 0 0 0 

Cyto 
(21) 4.8 76.2 0 0 14.3 4.8 0 0 

Endo 
(2) 0 0 100 0 0 0 0 0 

Golgi 
(88) 1.1 0 0 98.9 0 0 0 0 

Lyso 
(52) 0 1.9 0 0 96.2 0 1.9 0 

Mito 
(64) 0 0 0 0 0 98.4 1.6 0 

Nucleolus 
(94) 0 0 0 2.1 2.1 1.1 94.7 0 

Nucleus 
(78) 0 0 0 0 0 0 0 100 

 

Pattern Classification over 45 tissues 
Newberg & Murphy, 2008 



Test large set of proteins for a 
single tissue 

•  Analyze images of 1208 proteins from 
adrenal glands 

•  Use features that measure texture as 
well as spatial relationship between 
protein and hematoxylin staining 



Proximity features are 
computed on a circular 
window of radius 150 pixels. 
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Features 

•  Commute Time of nodes in protein 
graph to hematoxylin graph 

•  Cluster Validity indices 
•  Haralick features 
•  Spatial Statistics of DNA and Protein 

point-sets 



Classification results for 11 classes 

•  Cytoplasm  
•  Endoplasmic Reticulum 
•  Golgi 
•  Intermediate Filament 
•  Lysosome 
•  Membrane 
•  Microtubule 
•  Mitochondria 
•  Nucleus 
•  Peroxisome 
•  Secreted 

The class for each protein was 
obtained from UNIPROT GO 
annotations (assumed correct) 

Obtained classification acccuracy 
of 91-96%. 

Arvind Rao 



Automated detection of cancer 
markers 

•  Human Protein Atlas also contains 
images of all common solid tumors 

•  Comparing patterns of all proteins 
across all tumors to find proteins whose 
patterns discriminate tumors from 
normal tissue 

Estelle Glory-Afshar 
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Comparing normal and tumor 
images 

•  Compare images of ~200 proteins in normal 
and cancerous prostate tissue 

•  1 Protein different only in protein pattern: 
PPARG: Peroxisome proliferator-activated 
receptor gamma (PPAR-gamma).    
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Potential biomarkers 

•  Currently continuing analysis of proteins 
whose subcellular location features 
differ between normal and tumor 
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