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Outline

« Status of automated subcellular pattern
analysis in cultured cells

— Classification
— Pattern unmixing
— Generative models of patterns

* Application to tissue images
— Classification
— Comparison



Automated Analysis of Subcellular

Location

 Problem is hard because different cells have
different shapes, sizes, orientations

* Organelles not found in fixed locations
* Use numerical features to describe patterns




lllustration: 2D Morphological
Features to Distinguish Patterns
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Pattern unmixing

* Many proteins (or other
macromolecules) may be found in more

than one organelle

 Features “see” each combination of
organelles as a new pattern

« Can we “unmix” such mixed patterns?



Supervised Unmixing Assumptions

* have markers found in only one subcellular
location (fundamental pattern)

* fundamental pattern can be represented by
frequencies of distinct object types (e.qg.,
10% small round and 90% long skinny)

* mixed pattern formed by adding together
the objects from two or more fundamental
patterns - no new object types created



Find objects in each
image

Learn object types from
pure samples

Learn model for
distributions of object
types in pure samples
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Zhao et al 2005

Learning object types

* Find all objects in all images of
fundamental types

» Describe each object by features such as
size, ellipticity, distance from nucleus

» Cluster objects to find types

» Represent each fundamental pattern as
probabilities of observing each object type
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Examples of Object Types
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Test samples

 How do we test a subcellular pattern
unmixing algorithm?

* Need images of known mixtures of pure
patterns — difficult to obtain “naturally”

» Created test set by mixing different
proportions of two probes that localize
to different cell parts (lysosomes and
mitochondria)



Tao Peng, Ghislain Bonamy, Estelle
Glory, Sumit Chanda, Dan Rines
(Genome Research Institute of
Novartis Foundation)

» Lysotracker




 Mitotracker




* Mixture of Lysotracker and Mitotracker




Proceedings of National Academic of Sciences, January 2010

Supervised unmixing results
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Supervised unmixing results
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Unsupervised unmixing

* May not know all fundamental patterns,
and/or may not have markers that are

entirely in just one

» Solution: Simultaneously estimate the
fundamental patterns and the fractions
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Finding fundamental patterns

 Best fit obtained with three fundamental
patterns

* Using those three patterns, calculate
unmixing % for the “pure” images

Pure Mito Pure Lyso

Images Images
Pattern O 0.0 0.0
Pattern 1 8.8 99.9
Pattern 2 91.2 0.1



Unsupervised unmixing results
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-
Generative models for

communicating patterns

 How do we communicate results
earned about subcellular patterns?

* Proposal: Use generative models
earned from images to capture pattern
and variation in pattern




Generative Cell Models "
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Generative Cell Models

 Training
— Learn the distributions of model parameters over
many cells for each component of the model

« Synthesis

— Randomly sample parameters from the
distributions

— Construct components using the sampled
parameters



Synthesized nuclear shapes




.
Synthesized Images

Lysosomes Endosomes
SLML toolbox - Ivan Cao-Berg, Tao Peng, Ting Zhao :

Have portable tool for generating images from model
T
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Combining Models for Cell

Simulations
Protein 1
Cell Shape
Nuclear Model
Protein 2 Simulation
Cell Shape — for multiple
Nuclear Model proteins

Protein 3

— 3 Cell Shape
Shared Nuclear Model

Nuclear

and Cell -

Shape e Integrated with Virtual Cell (University of
Connectiicut)




Example combinations

Red = nuclear membrane, plasma membrane
Blue = Golgi

Green = Lysosomes

Cyan = Endosomes
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e Abstract

To build more accurate models of cells and tissues, the ability to incorporate accurate
information on the distributions of proteins (and other macromolecules) will become
increasingly important. This review describes current progress towards determining
and representing protein subcellular patterns so that the information can be used as
part of systems biology efforts. Approaches to decomposing an image of the subcellular
pattern of a protein give critical information about the fraction of that protein in each
of a number of fundamental patterns (e.g., organelles). Methods for learning generative
models from images provide a means of capturing the essential properties and variation
in those properties of cell shape and organelle patterns. The combination of models of
fundamental patterns and vectors specifying the fraction of a protein in each of them
provide a much better means of communicating subcellular patterns than the descrip-
tive terms that are currently used. Communicating information about subcellular pat-
terns is important not only for systems biology simulations but also for representing
results from microscopy experiments, including high content screening and imaging
flow cytometry, in a transportable and generalizable manner.  © 2010 International Society
for Advancement of Cytometry



Human Protein Atlas
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Immunocytochemistry

Signal Unmixin

28 44 34

- The Haematoxylin and DAB stains are |mag e
together o.e ’:"' "‘“'v; 28 23 29
SRR
« Each stain contains multiple source - SEETRETRES
— Haem. =n,R + n,G + n,B S . oo on s
— DAB =n, R + n,G + n;B o o e | 28 25 20
e 28 34 66

© 2 A

» Use two unmix methods to find w's s siogl 2 o 7




Cell segmentation?

* Most analysis of subcellular patterns
has used images segmented into single
cell regions

* Results on yeast and cultured cells
show classification of basic patterns can
be achieved without segmentation

 Given difficulty of segmenting tissue
images into cells, used field features



.
Test Dataset from Human

Protein Atlas

» Selected 16 proteins from the Atlas
« Two each from all major organelles (class)
« ~45 tissue types for each class (e.g. liver, skin)

« Goal: Train classifier to recognize each
subcellular pattern across all tissue types

« Use object and texture features

Justin Newberi



Pattern Classification over 45 tissues

L abels Prediction
ER Cyto Endo Golgi Lyso Mito Nucleolus Nucleus

(F;) 832 76 31 15 23 08 15 0
((13>2’t5°) 144 64 32 0 104 7.2 0 0.8
'(51':‘11‘; 81 99 757 0 27 0 0 3.6
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('-13’2370) 39 94 16 79 756 O 0.8 0.8
(':";g) 32 4 0 32 08 86 1.6 1.6

N“(ﬁ'gg;us 08 0 0 58 42 17 815 0

Nucleus 5 99 85 17 0 009 0 88

(117)

Overall accuracy 81%



Pattern Classification over 45 tissues

Prediction
ER Cyto Endo Golgi Lyso Mito Nucleolus Nucleus

(E?Ff) 100 0 O 0 0 0 0 0

((32y1t§’ 48 762 O 0 143 4.8 0 0
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Accuracy for 50% of images with highest confidence: 97%



Test large set of proteins for a
single tissue
* Analyze images of 1208 proteins from
adrenal glands

» Use features that measure texture as
well as spatial relationship between
protein and hematoxylin staining



Proximity features for a mitochondrial protein

3000 x
DNA channel 3000

Proximity features are
computed on a circular

window of radius 150 pixels.

Protein Channel 3000



Features

 Commute Time of nodes in protein
graph to hematoxylin graph

» Cluster Validity indices
 Haralick features

« Spatial Statistics of DNA and Protein
point-sets



Classification results for 11 classes

» Cytoplasm The class for each protein was
« Endoplasmic Reticulum obtained from UNIPROT GO
. Golgi annotations (assumed correct)

* [ntermediate Filament _ o
] Obtained classification acccuracy
ysosome of 91-96%.

« Membrane
* Microtubule
* Mitochondria
 Nucleus

. Peroxisome R
. Secreted | Rg




Automated detection of cancer
markers

 Human Protein Atlas also contains
images of all common solid tumors

« Comparing patterns of all proteins
across all tumors to find proteins whose
patterns discriminate tumors from =
normal tissue :

T
\ g e .
msafi

Estelle Iori-Afshar



Comparing normal and tumor
Images

« Compare images of ~200 proteins in normal
and cancerous prostate tissue

* 1 Protein different only in protein pattern:
PPARG: Peroxisome proliferator-activated
receptor gamma (PPAR-gamma).

44
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Potential biomarkers

» Currently continuing analysis of proteins
whose subcellular location features
differ between normal and tumor
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