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TOWARDS QUANTITATIVE SYSTEMS BIOLOGICAL TISSUE
MODELS BY USING WHOLE SLIDE IMAGING

Systems biology drives towards tissue models

Quantitative spatial data of tissues are missing: why whole
slide imaging is essential for systems biology of tissues

PART A: Generating data : Quantifying spatial protein
expression data in human skin (Full slides & TMAS)

Application of quantitative spatial profiles for
1. Reconstructing networks
2. Building tissue classifiers
3. Qualitative network reasoning

PART B: Generating data: Quantitative morphological analysis

of dynamic wound healing via 3D in vitro cultures (Full slides)
1. Analysis of cellular streams in tissues




,DRIVING THE SYSTEMS BIOLOGY OF TISSUES*

x So far mostly reductionist approach in biology:
+ Classic: Phenotype - Isolation of isolated genes = Function?
+ 2001: Sequencing of the human genome
+ Less genes than expected (24.000) - gene networks are essential

x Systems biological approach:

+ Quantitative and qualitative model building of cellular networks which can
explain certain aspects of the functional behavior of a dynamic system

x Tissue Systems Biology:
+ Concerns building models of human tissue and diseases

+ Highly relevant for clinically oriented research

+ Requires spatial data (morphology, expression data)
+ Requires insights into mechanisms of spatial control

Nature 2001, 409:860-921 und Science 2001, 291:1304-1351




GRAPHICAL MODELLING SYSTEM
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(1) Variable Sheet Editor, (2) Functions Library, (3)
Graphical Model Editor

(4) Emerging Tissue Morphology, (5) Parameter

Window, (6) Dynamically generated graphs

Satterlin T, Huber S, Dickhaus H, Grabe, N.
Modeling multi-cellular behavior in epidermal tissue homeostasis via finite state machines in multi-agent systems Bioinformatics

(2009), 25, 2057-2063.




STATE BASED SPATIAL MODELING OF CELL
DIFFERENTIATION
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N. Grabe, K. Neuber. A multi-cellular systems biology model predicts epidermal morphology, kinetics, and Ca++ flow.
Bioinformatics (2005) Sep 1;21(17):3541-7




WHAT DRIVES THE MODEL ?
EMERGENCE OF THE CALCIUM GRADIENT
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Grabe N, Neuber K.
A multicellular systems biology model predicts epidermal morphology, kinetics and Ca2+ flow , Bioinformatics. 2005 Sep 1;21(17):3541-7.




WHERE ARE THE SPATIAL DATA??

x Simulation proof of principle
shown, but:

x Two key questions:

+ How are genes & proteins spatially
expressed in the skin?

+ Why are they expressed the way they
are?
x What do we know?

+ 20041 publications in pubmed
(,epidermis human skin“)
+ Buried in pubmed? ,Partly yes” but:

+ No quantitative spatial expression
data for skin available !

+ No networks are available !

Nature Reviews Molecular Cell Biology 6, 328-340 (April 2005) | doi:10.10

The cornified envelope: a model of cell death
in the skin

Eleonora Candi, Rainer Schmidt & Gerry Melino

The epidermis functions as a barrier against the environment by
means of several layers of terminally differentiated, dead
keratinocytes — the cornified layer, which forms the endpoint of
epidermal differentiation and death. The cornified envelope
replaces the plasma membrane of differentiating keratinocytes
and consists of keratins that are enclosed within an insoluble
amalgam of proteins, which are crosslinked by
transglutaminases and surrounded by a lipid envelope. New
insights into the molecular mechanisms and the physiological
endpoints of cornification are increasing our understanding of
the pathological defects of this unique form of programmed cell
death, which is associated with barrier malfunctions and
hthyosis.




AUTOMATIC WHOLE SLIDE IMAGING (WSI)
= VIRTUAL MICROSCOPY (VM), SLIDE SCANNING

7 Histological
' L = Sectioning
oot o I
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— = Imaging of (many)
G Imaging of Whole Tissue Cores
Tissue Sections (Tissue Micro-
230 nm resolution, 40 GB uncompressed \ N Aray)




PART A

x Generating data : Quantifying spatial protein
expression data in human skin (Full slides &
TMAS)

1. Reconstructing networks
2. Building tissue classifiers
3. Qualitative network reasoning




QUANTITATIVE SPATIAL PROFILES (QSPS)

d=100%

Marker intensity [%]

Grabe, Pommerencke, Steinberg, Dickhaus, Tomakidi,
Reconstructing Protein Networks of Epithelial

Homeostasis , Bioinformatics, 2007
40 60 80 100
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APPLICATIONS OF EPIDERMAL
QUANTITATIVE SPATIAL PROFILING
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APPLICATIONS OF EPIDERMAL
QUANTITATIVE SPATIAL PROFILING
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IRRITATION PREDICTION BY IMAGING OF HSP27

x Mattek EFT Cultures treated with 0.4% SDS for 1h, 6h, 16h, 24h
x Profiling of Heat Shock Protein HSP27
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APPLICATIONS OF EPIDERMAL
QUANTITATIVE SPATIAL PROFILING
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RECONSTRUCTING PROTEIN NETWORHKS OF
EPIDERMAL DIFFERENTIATION

Epidermis 1 Epidermis 2 Epidermis 3

. Microscopic Imaging

Integrin alpha 6

. Image Processing

. Quantitative Biomarker
Profiling
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Grabe, Pommerencke, Steinberg, Dickhaus, Tomakidi, Reconstructing Protein Networks of Epithelial
Homeostasis , Bioinformatics, 2007




EXISTENCE OF ROBUST MECHANISMS FOR
SPATIAL REGULATION OF DIFFERENTIATION

NECERINNE
regulate
differentiation in
time and space?




APPLICATIONS OF EPIDERMAL
QUANTITATIVE SPATIAL PROFILING
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HUMAN PROTEIN ATLAS

x Largest Knowledge Ressource on Spatial Protein Expression Patterns
x 8832 antibodies against all types of human tissue
x 7,334,244 images of tissue microarrays (TMA

TP53 expression profiles.
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CAN THE HPA USED TO GENERATE QSPS?

x SKin tissue sections are ,just” Tissue Microarrays
and no whole slide scans
x => No, it cannot generate the required data:

+ No fluorescent staining => image segmentation
automatically not with sufficient quality

+ Too few sections => intra-tissue variation too high

x What could HPA data be used for?

+ Not direct comparison of QSPs but abstraction of QSPs
iIn the form of Signatures

x Technically challenging: combination of QSP
approach with color unmixing (= Robert Murphy)




SPATIAL SIGNATURES
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NUCLEI DETECTION

x Epidermal Differentiation in 9 Layers
Transcription Factor Grainy Head Like 1 (GRHL)




NUCLEI DETECTION & QUANTIFICATION

x Bands overlayed with staining intensities

Transcription Factor Grainy Head Like 1 (GRHL)




COLOR DECOMPOSED DAB/HEMALAUN STAIN

Transcription Factor Grainy Head Like 1 (GRHL)




LARGE SCALE NETWORK OF KEY GROWTH FACTORS
IN EPIDERMAL WOUND HEALING




APPLICATIONS OF EPIDERMAL
QUANTITATIVE SPATIAL PROFILING
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PART B

1. PART B: Generating data: Quantitative morphological
analysis of dynamic wound healing (Full slides)
1. Analysis of cellular streams in tissues




A NEW STANDARDIZED SKIN PUNCH MODEL

Built on basis of a commercial skin culture system (Mattek)
Dermis (Fibroblasts) + Epidermis (Keratinocytes)

Full stratification (all differentiation stages)

Reproducible(+), availability (+), costs (-), grown-up already (-)
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EFT culture cellular collagen gel  incubation for 10 days




SYSTEMATIC HISTOLOGICAL ANALYSIS

top view
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WOUND CLOSURE IN NOVEL IN VITRO FULL SKIN MODEL
- DAY O TO DAY 10 (24 TISSUES)

24 cultures x 2 halfs x 3 steps x 4 stainings =600 sections



TOWARDS MODELING TONGUE EXTENSION

x Tongue extension: not only migration !

x Interplay of proliferation, differentiation, migration during full
period of epidermal remodelling

x Differention already at day 1: Keratin K1/10 staining:




PROLIFERATION ANALYSIS BY IMAGE PROCESSING
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TOWARDS A MODEL OF EPIDERMAL CELL STREAMS

Horizontal and Vertical Cell Streams in Epidermal Wound Healing

Tissue
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REMODELLING IN OSCILLATING WAVES

Change in Compartments
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DOES PROLIFERATION INDUCE PULSING IN THE
WOUND EDGE? (NO)

x Proliferation extending homeostasis has decay pattern =>

Oscillating cell efflux into wound is cause for oscillating cell
numbers in viable compartment V
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DOES PROLIFERATION INDUCE PULSING IN THE
INNER WOUND? (PARTLY)

x Oscillation appears to pump some cells into the wound
x Quter wound filled by proliferation by multiplying migration
x To inner wound proliferation importance prevails

Influx into outer wound area Influx into inner wound area
1400 1400
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DYNAMIC DIFFERENTIATION INDUCES PULSING
OF WOUND EDGE

x Differentiation measured by corneal thickness

x |nitial migratory depletion triggers pulsing differentiation in
wound edge

=¢-dV Edge Outer
4l-dV Edge Middle
=&-dV Edge Inner
“@-dCornification

~ steady




TOWARDS A MODEL OF EPIDERMAL CELL STREAMS

Horizontal and Vertical Cell Streams in Epidermal Wound Healing

Eo (day t) Ew(day t) Ei(dayt) Po (day t) Pi(day t)




TOWARDS QUANTITATIVE SYSTEMS BIOLOGICAL TISSUE
MODELS BY USING WHOLE SLIDE IMAGING

Systems biology drives towards tissue models

Quantitative spatial of tissues are missing. why whole
slide imaging is essential for systems biology of tissues

PART A: Generating data : Quantifying spatial protein
expression data in human skin (Full slides & TMAS)

1. Application of quantitative spatial profiles for
1. Reconstructing networks
2. Building tissue classifiers
3. Qualitative network reasoning

PART B: Generating data: Quantitative morphological
analysis of dynamic wound healing (Full slides)

1. Analysis of cellular streams in tissues




KEY CONCEPT

x Systematic pertubation studies of tissue require integration of
+ in vitro-models (organotypic cell culture systems)
+ in silico-models

x Realisation
+ Quantitative data from native tissue
+ Quantitative data from in-vitro cultures using Whole-Slide Imaging
+ Multiple technologies (multipPhoton, confocal) will complement
+ Computational multi-cellular multi-agent platform for this data
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