

The mechanism of wound shielding & more using WSI

Niels Grabe National Center for Tumor Diseases Heidelberg (NCT) / Institute of Pathology, University Hospital Heidelberg

From Quantitative Tissue Analysis to Tissue Simulation

Overview of the zones, 36 h

Zone 1

Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models

Kai Safferling,^{1,2} Thomas Sütterlin,^{1,2} Kathi Westphal,^{1,2} Claudia Ernst,^{1,2} Kai Breuhahn,³ Merlin James,^{1,2} Dirk Jäger,^{1,2} Niels Halama,^{1,2} and Niels Grabe^{1,2}

¹Hamamatsu Tissue Imaging and Analysis Center, BIOQUANT, and ²Department of Medical Oncology, National Center for Tumor Diseases, University of Heidelberg, 69117 Heidelberg, Germany

³Institute of Pathology, University Hospital of Heidelberg, 69120 Heidelberg, Germany

Federal Ministry of Education and Research

Understanding Wound Healing is Fundamental in Skin Research

- Uncovers fundamentals of skin homeostasis
- Studies differentiation and migration
- Reveals cross-talk epidermis-dermis
- Route to cancer invasion

Table 1 Soluble mediators of re-epithelialization								
Ligand	Receptor	Type of receptor	Signaling proteins	Role in re-epithelialization	References			
HGF	MET	Receptor tyrosine kinase	Unknown, possibly ERC1 and ERC2, AKT, GAB1, PAK1 and/or PAK2	Stimulation of keratinocyte migration and probably proliferation	43			
FGF7, FGF10 and FGF22	FGFR2-IIIb, possibly FGFR1-IIIb	Receptor tyrosine kinase	Unknown, possibly ERK1, ERK2, AKT and/or STAT3	Stimulation of lavatinocyte proliferation and migration	44-46			
Heparin-binding EGF and other EGF- family members	EGFR (also known as ER881), possibly ER882, ER883 and/or ER884	Receptor tyrosine kinase	Unknown, possibly ERC1 and ERC2, AKT and/or STAT3	Stimulation of karatinocyte proliferation and migration	30, 47			
TGF-₿	TGF-Breceptor Land TGF-Breceptor II	Receptor serine/ threonine kinase	SMAD3 and others, including SMAD2 and MAPK	Inhibition of keratinocyte proliferation and survival	30, 51, 52			
Acetylcholine	M3 receptor	G-protein-coupled receptor	Ca ³⁺ -dependent guarylyl cyclase, cyclic GMP and PKG, leading to inhibition of RHO	Inhibition of keratinocyte migration	54			
	M4 receptor	G-protein-coupled receptor	Adenylyl cyclase, cyclic AMP and PKA, leading to activation of RHO	Stimulation of laratinocyte migration	54			
Catecholamines, including adminatine	β ₂ -Adrenoceptor	G-protein-coupled receptor	Activation of phosphatase PP2A, resulting in dephosphorylation and inhibition of ERC1 and ERC2	Inhibition of keratinocyte migration	55			
Polyunsaturated fatty acids	PPAR-candPPAR-p*	Nuclear receptor	Direct activation of target genes by binding to the promotecylenhancer of these genes	Stimulation of luratinocyte migration and survival	56-58			

DDF, epidemial growth factor; EGF, BDF receptor; EBK, extracellular-eignal-regulated kinase; FDF, Stroblast growth-factor; FGFR-HB, Bb isotomical FDF receptor; EGAB, growth-factor-receptor-bound-protein 2/GBB2/> associated binding protein (1 HGF, Negatoryte growth factor; MD, research kinase; FMA, gr2-activeted kinase; FMA, growth-factor-receptor-bound-protein 2/GBB2/> associated binding protein (1 HGF, Negatoryte growth factor; MD, research kinase; FMA, gr2-activeted kinase; FMA, gr2-activeted kinase; FMA, graveter-factor-receptor-bound-protein protein kinase; FMA, persoloome protein (1 HGF, Negatoryte; SMAC), SMAC)-family member (2; STA7), signal transducer and activeter of transcription 3; TGF-@, transforming-growth-factor-@, MMA-# Bandto might be fatty acids.

Wound healing as a <u>higher level</u> process?

Unsolved since 40 years: Krawczyk WS (1971) A pattern of epidermal cell migration during wound healing. *The Journal of Cell Biology* 49:247–263.

Main questions:

- 1. What is the role of 2D/3D migration?
- 2. By which mechanism 3D epithelium is built from 2D migration?
- 3. What is the role of the surrounding tissue?
- 4. How is this higher-level process orchestrated?

3D Punch Wound Model

3D Culture after 4 days of wound healing

Wound closure happens by a continously extending triangular (3D) tongue

Ki-67 Proliferation in Extending Epidermal Tongue

Spatio-temporal profile of proliferation (image processed Ki67⁺)

The grey area = the actual wound bed => does factually NOT contribute new cells but the surrounding tissue !!

No great change in thickness of skin layers: => where do the <u>newly produced</u> cells go to?

Increasing collective cell rotation in the basal layer of the intact tissue after wounding

Keratinocytes of the intact tissue surrounding show cell elongation and nuclear displacement

Control

- Cell elongation
- Nuclear displacement

Tunelling of collective migration in intact tissue and full neoepidermis

Current models of tongue extension:

Double Labelling Experiment in 3D in vitro culture: Green: @ 0h, Red: @ 24h

Novel shield extension mechanism creates the 3D neoepidermal structure

C Shield extension mechanism

Modeling adhesions

adhesion		Stem Cell (SC)	Basal Cell (BC)	Suprabasal Cell (SBC)	Early Suprabasal Cell (ESBC)	Basalmembrane (BM)
SC	٩	fixed pos.	1% —	90% 🛑		fixed pos.
BC	•	1% —	21% —	5% —	10% —	20 % - 45 % —
SBC		90% 🛑	5% —	90% 🛑	30% - 70% 📟	
ESBC			10% —	30% - 70% 📟	40% - 80% 🛑	
BM		fixed pos.	20 % - 45 % —			

Total multi-cellular 3D wound closure model

Modeling resulted in two potential control mechanisms of epidermal shield extension

Two possible models of shield extension mechanism:

- Lifting occurs by slow moving leaders and faster followers by ECM deposition of leaders
- Shield extension occurs by adhesion specific to the upper layer

Blocking of laminin-5 delays wound healing but does not perturb epithelial tongue formation

Hinterman and Quaranta, Matrix Biology Volume 23, Issue 2, May 2004, P. 75–85 Integrin-Blocking Antibodies Delay Keratinocyte Re-Epithelialization in a Human Three-Dimensional Wound Healing Model, Garlick Group, PLoS One. 2010; 5(5): e10528.

Perturbing Occludin

Peptide O-B 210-228: Biotin-SQIYALCNQ (bpa) YTPAATGLYVD-NH2

Occludin
O-A:101-121
O-B:210-228

Mechanism validation by tight-junction blockade

From shield extension to total wound closure

Top view on migration activity (blue stripes)

Standardized Cancer Immune Cell Profiling

Cell Networks for Tissue Segmentation

Lahrmann B, Halama S, Sinn HP, Schirmacher P, Jaeger D, Grabe N. **Automatic Tumor-Stroma Separation in Fluorescence TMAs Enables the Quantitative High-throughput Analysis of Multiple Cancer Biomarkers PLAS ONE** Desember 2011; (cl. 2(12)):e22019

PLoS ONE. December 2011;Vol 6(12):e28048

Cancer Modeling

Computational Simulation of Immune cell Profile

Patient Metastatic Response

b b b b b b b f ore

"House" of Medical Systems Biology

What is Medical Systems Biology? Integration of these levels in a way closer than ever before driven by technology to generate new points of intervention.